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We met Ranjit through one of Eleanor’s friends, Michelle Spektor, an expert in the history of
biometrics. Ranjit explores concepts, keywords, and everyday stories about living with data
and Al in and from the Majority World (an alternative to the terms ‘developing world’ or
‘Third World’ that describes the countries where the majority of the world’s population
resides). This covers everything from experiences of biometric surveillance systems like the
Aadhar card system in India to creating resources and primers about Al in and from the
Majority World. Ranjit was a joyful presence on the podcast and also brings his trademark
creativity, warmth and enthusiasm to his academic work. He introduced to us the idea of
biometric systems ‘seeing’ in ‘low and high resolution’, foregrounding some people and
aspects of the human experience and obfuscating others. These are not just’ metaphors; we
rely on these kinds of ideas to help us understand the true impact of identification systems
in shaping our lives and the allocation of state resources.

Slow is a culture. It is a movement. It is a way of life. Slow is a reaction to the increasing
pace of life in the fast lane, from fast food to fast scholarship. As Carl Honore!, one of the
prime proponents of the slow movement, puts it: Slow is about taking the time to do
something as well as possible, not as fast as possible. Slow is a response to efficiency.

This piece is not in praise of slowness; it is an invitation to it. It connects slowness with
scale, particularly in response to quickness of data systems that have come to shape our
everyday lives. It explores scale in relationship to two prominent features of big data
systems: volume and velocity. Volume refers to quantity of accumulated data; big volume
implies large quantities of data that cannot simply be read by humans. We need machines,
specifically computers, to understand it. Velocity marks the speed at which data is
accumulated. The greater the velocity, the faster the accumulation, the more difficult it
becomes to process data and make sense of it.

In exploring a dozen ways to get lost in large scale data sets, Lawrence Busch? begins
with a simple distinction of scales in managing volume of data. Scale in big data operates
at two levels: aggregation and individuation. Aggregation involves combining individual



data (records or even, datasets) to create large volumes of data. These large volumes of
data are processed to find correlations that connect groups with certain characteristic
patterns of behavior. Aggregation produces patterns in similarities; scale becomes a
matter of managing the largeness of volumes of data. Individuation involves establishing
characteristics of an individual user in relation to patterns of aggregated group behavior.
The individual only exists as unique in relationship to these aggregates. Individuation
produces patterns through differences; scale becomes a matter of managing the smallness
of individual datasets.

Scale in managing volume is a matter of establishing relationships between data records.
What does the data represent collectively is a question of aggregation. How does the data
represent an individual’s place and position in a dataset is a question of individuation.

Scale not only represents but also creates these relationships. In representing aggregate
behavior of people, it creates people who fall into categories of “desirable” behavior.
‘Trustworthy’ people, ‘Punctual’ people, ‘Unique’ people, this list can go on. These
categories of ‘desirable’ behavior inevitably come with their inverse.? ‘“Trustworthy’
people can only exist in relation to ‘untrustworthy’ people. Otherwise, everyone is
trustworthy, and no one is trustworthy. People not only have to fit into these new
categories of ‘desirable’ behavior, but they also must know when they fall into its inverse
and work their way out of it.

Now imagine if this happens quickly. One day you’re ‘trustworthy’, the next day you’re
not. With increasing use of data systems in all aspects of everyday life, these decisions
based on sociohistorical datasets and made by machines have had real consequences at a
much faster pace. People are left to face these uneven consequences, often without an
explanation about how such decisions are made.

Examples of such consequences include the lawsuit in Kenya around double registration
of vulnerable citizens*, who have struggled to obtain citizenship documents because their
biometrics were recorded in refugee databases. One day you’re a citizen, the next day
you're a refugee. And the class action lawsuit in Australia against RoboDebt’, an
automated debt recovery scheme, which wrongly accused about 400,000 welfare
recipients of misreporting their income and issued reams of debt notices. One day you're
a welfare beneficiary, the next day you’re asked to return your welfare payments.

This brings me to the first point that I wish to make with this piece: The pace of such
decisions must become slower, especially when there are life chances at stake. This
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slowness requires erring on the side of generosity and inclusion, rather than efficiency
and exclusion.

During my fieldwork on the challenges of appropriating India’s biometrics-based identity
number in welfare services, a respondent narrated a parable on unanticipated
consequences of interventions. It provides a window into this call for erring on the side
of generosity.

There once was a man who pledged that he would feed the pigeons that used to
gather on his porch every day. Over time, he realized that there were not only
pigeons eating the feed, but also some crows. The moral of this story lies in one
simple question: Should this man stop feeding the pigeons because of the crows?
And, I believe, the answer should be, “No” (Fieldnotes, 2 July 2015).

Given the inevitability of failures associated with any data system, the work of
maintaining “good” data systems must err on the side of generosity.

Erring on the side of generosity involves four crucial steps:

e First is to start small and with multiple pilot projects across places and contexts.
These projects must be complemented with existing processes that provide
alternative ways to achieve the same goals when data systems fail. These pilot
projects offer an opportunity to iterate on experimenting with how well a data
system works and its consequences across scales of place and time. These systems
can be connected with each other over time to produce data infrastructures.

e Second, ensuring that data systems are incorporated in everyday life linearly (or
at a steady rate), rather than exponentially (or at a compound rate). Societal
change is slow and tends to unfold linearly, while data systems are fast and grow
exponentially. The disconnect between the two often produces breakdowns in
how data systems are incorporated in any social process.

e Third, moving at the speed of trust between system operators and people who will
eventually become subject to the system for accessing social services. People need
time to develop their own understanding and literacy in interacting with these
systems. They need opportunities to speak back and seek due process when they
face harm.

e Fourth, accepting inefficiencies and errors as a part of the operating cost of the
system, rather than passing on this cost on to the people. This happens most often
in determining eligibility of a person in receiving a service, especially in the



context of targeted welfare services such as RoboDebt.” The parable was also in
response to concerns around determining eligibility. An automated decision of
ineligibility or debt notice (in RoboDebt’s case) must not automatically exclude an
existing beneficiary from a welfare service without due process.

All these steps take time. They require that we slowdown in building and living with data
systems.

This brings me to the second point I wish to make with this piece: slowing down has
deep implications for managing velocity of data. This velocity spans from the pace of
data collection, processing, and analysis to the quickness of data-driven decision-making.
Velocity is often treated as synonymous with efficiency in the discourse of big data.

Its value has often been illustrated with a story of selling Halloween cookies at Walmart.
This story, as documented by Bernard Marr on real-time insights from Walmart’s data
cloud in 20178, goes as follows:

Sales data showed that a particular kind of novelty cookie launched to celebrate
Halloween was very popular in most Walmart stores, except two where they were
not selling at all. This difference was quickly investigated. The investigation
revealed that a simple stocking oversight had resulted in the cookies not being
placed on the shelves at all in the two stores. The cookies were immediately put
on shelves preventing further loss of sales.

The story represents insights emerging from both aggregation and individuation. While
the Halloween cookies were very successful as an aggregate pattern in sales data, there
were two stores that individually were not doing as well as expected in terms of the
aggregated pattern. This story is about not just the speed of data analysis and
interpretation, but also the speed of making real-time decisions based on this data. Had

the stocking oversight been noticed after Halloween, the cookies may not have sold at
all.

Certain decisions are time sensitive. They range from simple logistical issues at
supermarkets to humanitarian crisis responses. Responding quickly is essential, even if
it is with incomplete data. Doing something at pace is better than waiting in hopes of
doing it better. However, not every data-driven decision is time-sensitive. Particularly,
when it comes to determining life chances, decisions to exclude must not be taken
without due process.



Making data-driven judgements on citizenship status in Kenya and welfare eligibility in
Australia are examples of such crucial decisions that need time. When decisions are made
quickly, they become prone to bias, which often stacks the odds against the systemically
marginalized. Slowing down would inevitably involve understanding the unevenness of
bias and finding ways to tackle it.

Scale as a matter of managing velocity represents scales of time. This is obvious in every
call for due process that demands that time taken to make a decision must correspond
with the magnitude of consequences and harms of incorrect decisions for people who
must live with that decision. If the potential of harm is greater, the time taken for due
process before deciding must be correspondingly longer.

These calls, however, tend to take the infrastructure required for data systems to produce
automated decisions as a given. When we open the process of building this infrastructure
to scrutiny, we will find that all infrastructural change is slow, whether it is building a
new subway line in a city or creating the conditions for the use of data systems in
delivering any service. Automated decision making based on data has tremendous
infrastructural momentum. This momentum is a result of large-scale investments of
resources made into building data infrastructures and producing volumes of data to
inform decision making. These investments have now become justifications for
appropriating data systems in existing practices of providing services. The impetus on
velocity comes from these justifications and resulting expectations of quick returns from
ongoing investments.

However, existing practices do not simply roll over and change when faced with such
infrastructural momentum. They often exhibit infrastructural inertia. Infrastructural
inertia does not imply stasis; rather it is the work required to change existing practices
and develop new competencies in transitioning to new processes of data-driven decision
making. The slowness in infrastructuring data-driven decision making emerges in the
mutual shaping of this momentum of data systems and inertia of existing practices.

It is during this slow process of mutual shaping that meaningful interventions in erring
on the side of generosity can be made. Rather than reacting to the harms of data-driven
decision-making, it is time that we proactively account for its consequences and prepare
for them. Whether this accounting happens through algorithmic impact assessments or
through algorithmic audits, its effect is to slow the momentum of data-driven decision



making so that its consequences can be assessed/audited before its deployment in the real
world.

Let us strengthen the inertia of transitioning to data-driven decision making. This is not
resistance for its own sake; it is the only way of ensuring that the dignity of data subjects
is not the cost of efficiency. Being slow does not mean rejecting change. It means
embracing change thoughtfully. A technology that enables us to do this...that scales
slowly and thoughtfully is ‘good.’
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